Suzaku X-Ray Monitoring of Gamma-Ray-Emitting Radio Galaxy, NGC 1275

Ikumi Edahiro,

Yasushi Fukazawa, Kenji Kawaguchi, Yasuyuki Tanaka, Ryosuke Itoh, Yuka Kanda, Kensei Shiki

Hiroshima University

Introduction

☆NGC 1275

- An elliptical galaxy, locating at the center of the Perseus cluster (z=0.0179)
- It is known as an AGN and classified as a radio-loud Seyfert galaxy or a radio galaxy.
- A viewing angle of apparent jet is about 30-55 deg (Walker+94).
- Fermi detected **GeV** gamma-ray emission for the first time (Abdo+09), and NGC 1275 is the brightest in gamma-ray among radio galaxies.

Optical (Hubble)

Radio (VLA)

GeV Gamma-ray Spectrum Kataoka+10

X-ray (Chandra)

Past Observations

- Fermi observation showed the time variation of GeV gamma-ray flux with several months scale (Kataoka+10, Donato+10, Brown+11) and TeV gamma-ray were detected with MAGIC (Aleksic+10).
- *The SED of NGC 1275 is reported to be explained by the synchrotron self-Compton (SSC) model (Abdo+09).
- →However, optical and X-ray emission from jet has not been clear.
- Recently, variability correlation between GeV and optical was found. (Aleksic+14)

Past X-ray Observations

Chandra

Flux 6.1×10⁻¹² , Γ 1.6±0.1 (0.5-5keV) (Balmaverde+06)

Chandra data suffer from pile-up for the nucleus.

XMM-Newton and Chandra...

- can resolve the nucleus emission
- the number of observations are small

Swift/BAT

Flux 1×10⁻¹¹, Γ 1.7(+0.3,-0.7) (15-55keV) (Ajello+09)

Swift/BAT could not resolve the nucleus spatially.

Past X-ray Observations

Past Study of Variability Correlation between X-ray (Suzaku) and GeV Gamma-ray → There are no correlation in 2008-2011 (Yamazaki+13).

2008-2014 GeV Gamma-ray Light Curve (archival light curve supplied by GSFC)

☆Purpose of This Study

Extend the analysis of Suzaku/XIS observation data to 2014 to study the variability correlation with a big GeV Gamma-ray flare in 2013-2014.

(Suzaku/XIS has observed the Perseus Cluster every half year with 40 ks.)

Analysis of Suzaku/XIS data of NGC 1275

Suzaku PSF cannot resolve NGC 1275 nucleus well.

→We extracted the AGN emission by imaging spectroscopy.

the data, and obtained the AGN photon counts.

Radius (pix)

Results: Suzaku/XIS X-ray Light Curve of NGC 1275

2006-2014 X-ray Light Curve

Brightening of the nucleus in the X-ray band was found in 2013-2014, correlating with GeV gamma-ray flare.

This is the first evidence of X-ray variability of NGC 1275.

2008-2014 Gamma-ray Light Curve

X-ray spectrum is consistent with the XMM-Newton results. However, it is not clear how the X-ray spectrum varied, because of worse Suzaku/XIS PSF.

2013-2014

Origin of X-ray variability

XMM-Newton spectrum

- Fe-K line (equivalent width ~70 eV)
- Photon index ~1.73

Spectrum is similar to that of Seyfert galaxy.

Weak correlation between X and Gamma in 2008-2011.

Disk/corona emission seems to be dominant in the X-ray band.

What is the origin of X-ray variability correlating with Gamma-ray?

Jet emission or disk/corona emission?

If disk/corona emission, NGC1275 would become a rare and important object from which both disk/corona emission and jet emission from X-ray to gamma-ray band. We can study the disk/jet connection from the X-ray and gamma-ray correlation. Note that optical lines are reprocess of disk/corona emission, while X-ray traces the disk/corona emission directly.

Origin of X-ray variability

If jet emission, variable X-ray component would be a low energy tail of inverse Compton.

We can trace a precise SED variability from X-ray to gamma-ray to constrain the flare mechanism.

In the near future, we can trace the jet flare from X-ray to gamma-ray, with NuStar, ASTRO-H, Fermi, and CTA.

llow Hel

If we could obtain the X-ray spectral variability...

We infer the following X-ray spectral components for NGC 1275.

However, Suzaku cannot distinguish these two scenarios.

Further X-ray observations (XMM-Newton, NuStar, ASTRO-H) are important.

☆Summary

- We analyzed Suzaku/XIS observation data of NGC 1275.
- •From 2013 to 2014, brightening of the nucleus in the X-ray band was found, correlating with GeV gamma-ray flare
 (This is the first evidence of X-ray variability of NGC 1275.)
- However, we cannot find what the variability component is, disk/corona or jet ?

☆Future Prospects

- In addition to Fermi observation, it is important to observe NGC 1275 by using XMM-Newton, NuStar, ASTRO-H.
- •CTA TeV gamma-ray observation is also important to understand the gamma-ray flare.
- •We are also continuing to monitor NGC 1275 by Kanata optical telescope (see Kawaguchi's poster).